Skip to main content

Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion

Publication ,  Conference
Zhang, Y; Lu, J; Wang, X; Li, Z; Xiao, R; Wang, W; Li, M; Zhang, P
Published in: DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia
October 14, 2022

This paper describes the deepfake audio detection system submitted to the Audio Deep Synthesis Detection (ADD) Challenge Track 3.2 and gives an analysis of score fusion. The proposed system is a score-level fusion of several light convolutional neural network (LCNN) based models. Various front-ends are used as input features, including low-frequency short-time Fourier transform and Constant Q transform. Due to the complex noise and rich synthesis algorithms, it is difficult to obtain the desired performance using the training set directly. Online data augmentation methods effectively improve the robustness of fake audio detection systems. In particular, the reasons for the poor improvement of score fusion are explored through visualization of the score distributions and comparison with score distribution on another dataset. The overfitting of the model to the training set leads to extreme values of the scores and low correlation of the score distributions, which makes score fusion difficult. Fusion with partially fake audio detection system improves system performance further. The submission on track 3.2 obtained the weighted equal error rate (WEER) of 11.04%, which is one of the best performing systems in the challenge.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia

DOI

Publication Date

October 14, 2022

Start / End Page

43 / 52
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, Y., Lu, J., Wang, X., Li, Z., Xiao, R., Wang, W., … Zhang, P. (2022). Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion. In DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia (pp. 43–52). https://doi.org/10.1145/3552466.3556528
Zhang, Y., J. Lu, X. Wang, Z. Li, R. Xiao, W. Wang, M. Li, and P. Zhang. “Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion.” In DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia, 43–52, 2022. https://doi.org/10.1145/3552466.3556528.
Zhang Y, Lu J, Wang X, Li Z, Xiao R, Wang W, et al. Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion. In: DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia. 2022. p. 43–52.
Zhang, Y., et al. “Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion.” DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia, 2022, pp. 43–52. Scopus, doi:10.1145/3552466.3556528.
Zhang Y, Lu J, Wang X, Li Z, Xiao R, Wang W, Li M, Zhang P. Deepfake Detection System for the ADD Challenge Track 3.2 Based on Score Fusion. DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia. 2022. p. 43–52.

Published In

DDAM 2022 - Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia

DOI

Publication Date

October 14, 2022

Start / End Page

43 / 52