ReaLPrune: ReRAM Crossbar-Aware Lottery Ticket Pruning for CNNs
Training machine learning (ML) models at the edge (on-chip training on end user devices) can address many pressing challenges including data privacy/security, increase the accessibility of ML applications to different parts of the world by reducing the dependence on the communication fabric and the cloud infrastructure, and meet the real-time requirements of AR/VR applications. However, existing edge platforms do not have sufficient computing capabilities to support complex ML tasks such as training large CNNs. ReRAM-based architectures offer high-performance yet energy efficient computing platforms for on-chip CNN training/inferencing. However, ReRAM-based architectures are not scalable with the size of the CNN. Larger CNNs have more weights, which requires more ReRAM cells that cannot be integrated in a single chip. Moreover, training larger CNNs on-chip will require higher power, which cannot be afforded by these smaller devices. Pruning is an effective way to solve this problem. However, existing pruning techniques are either targeted for inferencing only, or they are not crossbar-aware. This leads to sub-optimal hardware savings and performance benefits for CNN training on ReRAM-based architectures. In this paper, we address this problem by proposing a novel crossbar-aware pruning strategy, referred as ReaLPrune, which can prune more than 90% of CNN weights. The pruned model can be trained from scratch without any accuracy loss. Experimental results indicate that ReaLPrune reduces hardware requirements by 77.2% and accelerates CNN training by ∼20× compared to unpruned CNNs. ReaLPrune also outperforms other crossbar-aware pruning techniques in terms of both performance and hardware savings. In addition, ReaLPrune is equally effective for diverse datasets and more complex CNNs.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 46 Information and computing sciences
- 0906 Electrical and Electronic Engineering
- 0806 Information Systems
- 0805 Distributed Computing
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 46 Information and computing sciences
- 0906 Electrical and Electronic Engineering
- 0806 Information Systems
- 0805 Distributed Computing