A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence
Publication
, Journal Article
Beauville, A; Schoen, C
Published in: International Mathematics Research Notices
March 1, 2023
We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle [C]-[C-] in JC modulo algebraic equivalence is torsion.
Duke Scholars
Published In
International Mathematics Research Notices
DOI
EISSN
1687-0247
ISSN
1073-7928
Publication Date
March 1, 2023
Volume
2023
Issue
5
Start / End Page
3671 / 3675
Related Subject Headings
- General Mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Beauville, A., & Schoen, C. (2023). A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices, 2023(5), 3671–3675. https://doi.org/10.1093/imrn/rnab344
Beauville, A., and C. Schoen. “A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence.” International Mathematics Research Notices 2023, no. 5 (March 1, 2023): 3671–75. https://doi.org/10.1093/imrn/rnab344.
Beauville A, Schoen C. A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices. 2023 Mar 1;2023(5):3671–5.
Beauville, A., and C. Schoen. “A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence.” International Mathematics Research Notices, vol. 2023, no. 5, Mar. 2023, pp. 3671–75. Scopus, doi:10.1093/imrn/rnab344.
Beauville A, Schoen C. A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices. 2023 Mar 1;2023(5):3671–3675.
Published In
International Mathematics Research Notices
DOI
EISSN
1687-0247
ISSN
1073-7928
Publication Date
March 1, 2023
Volume
2023
Issue
5
Start / End Page
3671 / 3675
Related Subject Headings
- General Mathematics
- 4902 Mathematical physics
- 0101 Pure Mathematics