Skip to main content
Journal cover image

A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence

Publication ,  Journal Article
Beauville, A; Schoen, C
Published in: International Mathematics Research Notices
March 1, 2023

We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle [C]-[C-] in JC modulo algebraic equivalence is torsion.

Duke Scholars

Published In

International Mathematics Research Notices

DOI

EISSN

1687-0247

ISSN

1073-7928

Publication Date

March 1, 2023

Volume

2023

Issue

5

Start / End Page

3671 / 3675

Related Subject Headings

  • General Mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Beauville, A., & Schoen, C. (2023). A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices, 2023(5), 3671–3675. https://doi.org/10.1093/imrn/rnab344
Beauville, A., and C. Schoen. “A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence.” International Mathematics Research Notices 2023, no. 5 (March 1, 2023): 3671–75. https://doi.org/10.1093/imrn/rnab344.
Beauville A, Schoen C. A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices. 2023 Mar 1;2023(5):3671–5.
Beauville, A., and C. Schoen. “A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence.” International Mathematics Research Notices, vol. 2023, no. 5, Mar. 2023, pp. 3671–75. Scopus, doi:10.1093/imrn/rnab344.
Beauville A, Schoen C. A Non-Hyperelliptic Curve with Torsion Ceresa Cycle Modulo Algebraic Equivalence. International Mathematics Research Notices. 2023 Mar 1;2023(5):3671–3675.
Journal cover image

Published In

International Mathematics Research Notices

DOI

EISSN

1687-0247

ISSN

1073-7928

Publication Date

March 1, 2023

Volume

2023

Issue

5

Start / End Page

3671 / 3675

Related Subject Headings

  • General Mathematics
  • 4902 Mathematical physics
  • 0101 Pure Mathematics