
Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, whilst a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5 % level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01 % level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large 2-D trap array. © 2013 Springer-Verlag Berlin Heidelberg.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4017 Mechanical engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4017 Mechanical engineering
- 0913 Mechanical Engineering
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics