Deterministic ultracold ion source targeting the Heisenberg limit.
The major challenges to fabricate quantum processors and future nano-solid-state devices are material modification techniques with nanometer resolution and suppression of statistical fluctuations of dopants or qubit carriers. Based on a segmented ion trap with mK laser-cooled ions we have realized a deterministic single-ion source which could operate with a huge range of sympathetically cooled ion species, isotopes or ionic molecules. We have deterministically extracted a predetermined number of ions on demand and have measured a longitudinal velocity uncertainty of 6.3 m/s and a spatial beam divergence of 600 microrad. We show in numerical simulations that if the ions are cooled to the motional ground state (Heisenberg limit) nanometer spatial resolution can be achieved.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences