Skip to main content

MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY

Publication ,  Conference
Lu, Y; Chen, H; Lu, J; Ying, L; Blanchet, J
Published in: ICLR 2022 - 10th International Conference on Learning Representations
January 1, 2022

In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schrödinger equation on a hypercube with zero Dirichlet boundary condition, which is applied in quantum-mechanical systems. We establish upper and lower bounds for both methods, which improve upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Method is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show similar-behavior of dimension dependent power law for deep PDE solvers.

Duke Scholars

Published In

ICLR 2022 - 10th International Conference on Learning Representations

Publication Date

January 1, 2022
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, Y., Chen, H., Lu, J., Ying, L., & Blanchet, J. (2022). MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY. In ICLR 2022 - 10th International Conference on Learning Representations.
Lu, Y., H. Chen, J. Lu, L. Ying, and J. Blanchet. “MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY.” In ICLR 2022 - 10th International Conference on Learning Representations, 2022.
Lu Y, Chen H, Lu J, Ying L, Blanchet J. MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY. In: ICLR 2022 - 10th International Conference on Learning Representations. 2022.
Lu, Y., et al. “MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY.” ICLR 2022 - 10th International Conference on Learning Representations, 2022.
Lu Y, Chen H, Lu J, Ying L, Blanchet J. MACHINE LEARNING FOR ELLIPTIC PDES: FAST RATE GENERALIZATION BOUND, NEURAL SCALING LAW AND MINIMAX OPTIMALITY. ICLR 2022 - 10th International Conference on Learning Representations. 2022.

Published In

ICLR 2022 - 10th International Conference on Learning Representations

Publication Date

January 1, 2022