Skip to main content
release_alert
Welcome to the new Scholars 3.0! Read about new features and let us know what you think.
cancel
Journal cover image

Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths.

Publication ,  Journal Article
Amyar, A; Fahmy, AS; Guo, R; Nakata, K; Sai, E; Rodriguez, J; Cirillo, J; Pareek, K; Kim, J; Judd, RM; Ruberg, FL; Weinsaft, JW; Nezafat, R
Published in: J Magn Reson Imaging
April 13, 2023

BACKGROUND: In cardiac T1 mapping, a series of T1 -weighted (T1 w) images are collected and numerically fitted to a two or three-parameter model of the signal recovery to estimate voxel-wise T1 values. To reduce the scan time, one can collect fewer T1 w images, albeit at the cost of precision or/and accuracy. Recently, the feasibility of using a neural network instead of conventional two- or three-parameter fit modeling has been demonstrated. However, prior studies used data from a single vendor and field strength; therefore, the generalizability of the models has not been established. PURPOSE: To develop and evaluate an accelerated cardiac T1 mapping approach based on MyoMapNet, a convolution neural network T1 estimator that can be used across different vendors and field strengths by incorporating the relevant scanner information as additional inputs to the model. STUDY TYPE: Retrospective, multicenter. POPULATION: A total of 1423 patients with known or suspected cardiac disease (808 male, 57 ± 16 years), from three centers, two vendors (Siemens, Philips), and two field strengths (1.5 T, 3 T). The data were randomly split into 60% training, 20% validation, and 20% testing. FIELD STRENGTH/SEQUENCE: A 1.5 T and 3 T, Modified Look-Locker inversion recovery (MOLLI) for native and postcontrast T1 . ASSESSMENT: Scanner-independent MyoMapNet (SI-MyoMapNet) was developed by altering the deep learning (DL) architecture of MyoMapNet to incorporate scanner vendor and field strength as inputs. Epicardial and endocardial contours and blood pool (by manually drawing a large region of interest in the blood pool) of the left ventricle were manually delineated by three readers, with 2, 8, and 9 years of experience, and SI-MyoMapNet myocardial and blood pool T1 values (calculated from four T1 w images) were compared with conventional MOLLI T1 values (calculated from 8 to 11 T1 w images). STATISTICAL TESTS: Equivalency test with 95% confidence interval (CI), linear regression slope, Pearson correlation coefficient (r), Bland-Altman analysis. RESULTS: The proposed SI-MyoMapNet successfully created T1 maps. Native and postcontrast T1 values measured from SI-MyoMapNet were strongly correlated with MOLLI, despite using only four T1 w images, at both field-strengths and vendors (all r > 0.86). For native T1 , SI-MyoMapNet and MOLLI were in good agreement for myocardial and blood T1 values in institution 1 (myocardium: 5 msec, 95% CI [3, 8]; blood: -10 msec, 95%CI [-16, -4]), in institution 2 (myocardium: 6 msec, 95% CI [0, 11]; blood: 0 msec, [-18, 17]), and in institution 3 (myocardium: 7 msec, 95% CI [-8, 22]; blood: 8 msec, [-14, 30]). Similar results were observed for postcontrast T1 . DATA CONCLUSION: Inclusion of field strength and vendor as additional inputs to the DL architecture allows generalizability of MyoMapNet across different vendors or field strength. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Magn Reson Imaging

DOI

EISSN

1522-2586

Publication Date

April 13, 2023

Location

United States

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 11 Medical and Health Sciences
  • 09 Engineering
  • 02 Physical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Amyar, A., Fahmy, A. S., Guo, R., Nakata, K., Sai, E., Rodriguez, J., … Nezafat, R. (2023). Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28739
Amyar, Amine, Ahmed S. Fahmy, Rui Guo, Kei Nakata, Eiryu Sai, Jennifer Rodriguez, Julia Cirillo, et al. “Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths.J Magn Reson Imaging, April 13, 2023. https://doi.org/10.1002/jmri.28739.
Amyar A, Fahmy AS, Guo R, Nakata K, Sai E, Rodriguez J, et al. Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths. J Magn Reson Imaging. 2023 Apr 13;
Amyar, Amine, et al. “Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths.J Magn Reson Imaging, Apr. 2023. Pubmed, doi:10.1002/jmri.28739.
Amyar A, Fahmy AS, Guo R, Nakata K, Sai E, Rodriguez J, Cirillo J, Pareek K, Kim J, Judd RM, Ruberg FL, Weinsaft JW, Nezafat R. Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T1 Mapping Across Vendors and Field Strengths. J Magn Reson Imaging. 2023 Apr 13;
Journal cover image

Published In

J Magn Reson Imaging

DOI

EISSN

1522-2586

Publication Date

April 13, 2023

Location

United States

Related Subject Headings

  • Nuclear Medicine & Medical Imaging
  • 11 Medical and Health Sciences
  • 09 Engineering
  • 02 Physical Sciences