Imaging across multiple spatial scales with the multi-camera array microscope
This paper experimentally examines different configurations of a multi-camera array microscope (MCAM) imaging technology. The MCAM is based upon a densely packed array of “micro-cameras” to jointly image across a large field-of-view (FOV) at high resolution. Each micro-camera within the array images a unique area of a sample of interest, and then all acquired data with 54 micro-cameras are digitally combined into composite frames, whose total pixel counts significantly exceed the pixel counts of standard microscope systems. We present results from three unique MCAM configurations for different use cases. First, we demonstrate a configuration that simultaneously images and estimates the 3D object depth across a 100 × 135 mm2 FOV at approximately 20 µm resolution, which results in 0.15 gigapixels (GP) per snapshot. Second, we demonstrate an MCAM configuration that records video across a continuous 83 × 123 mm2 FOV with twofold increased resolution (0.48 GP per frame). Finally, we report a third high-resolution configuration (2 µm resolution) that can rapidly produce 9.8 GP composites of large histopathology specimens.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 1005 Communications Technologies
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics