Editorial: Interpretable and explainable machine learning models in oncology.
Publication
, Journal Article
Hrinivich, WT; Wang, T; Wang, C
Published in: Front Oncol
2023
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
Front Oncol
DOI
ISSN
2234-943X
Publication Date
2023
Volume
13
Start / End Page
1184428
Location
Switzerland
Related Subject Headings
- 3211 Oncology and carcinogenesis
- 3202 Clinical sciences
- 1112 Oncology and Carcinogenesis
Citation
APA
Chicago
ICMJE
MLA
NLM
Hrinivich, W. T., Wang, T., & Wang, C. (2023). Editorial: Interpretable and explainable machine learning models in oncology. Front Oncol, 13, 1184428. https://doi.org/10.3389/fonc.2023.1184428
Hrinivich, William Thomas, Tonghe Wang, and Chunhao Wang. “Editorial: Interpretable and explainable machine learning models in oncology.” Front Oncol 13 (2023): 1184428. https://doi.org/10.3389/fonc.2023.1184428.
Hrinivich WT, Wang T, Wang C. Editorial: Interpretable and explainable machine learning models in oncology. Front Oncol. 2023;13:1184428.
Hrinivich, William Thomas, et al. “Editorial: Interpretable and explainable machine learning models in oncology.” Front Oncol, vol. 13, 2023, p. 1184428. Pubmed, doi:10.3389/fonc.2023.1184428.
Hrinivich WT, Wang T, Wang C. Editorial: Interpretable and explainable machine learning models in oncology. Front Oncol. 2023;13:1184428.
Published In
Front Oncol
DOI
ISSN
2234-943X
Publication Date
2023
Volume
13
Start / End Page
1184428
Location
Switzerland
Related Subject Headings
- 3211 Oncology and carcinogenesis
- 3202 Clinical sciences
- 1112 Oncology and Carcinogenesis