Skip to main content
Journal cover image

Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data.

Publication ,  Journal Article
Overson, DK; Bresticker, J; Willey, D; Robb, F; Song, AW; Truong, T-K; Darnell, D
Published in: Phys Med Biol
June 8, 2023

Objective.A novel magnetic resonance imaging (MRI) radio-frequency (RF) coil design, termed an integrated RF/wireless (iRFW) coil design, can simultaneously perform MRI signal reception and far-field wireless data transfer with the same coil conductors between the coil in the scanner bore and an access point (AP) on the scanner room wall. The objective of this work is to optimize the design inside the scanner bore to provide a link budget between the coil and the AP for the wireless transmission of MRI data.Approach.Electromagnetic simulations were performed at the Larmor frequency of a 3T scanner and in a WiFi wireless communication band to optimize the radius and position of an iRFW coil located near the head of a human model inside the scanner bore, which were validated by performing both imaging and wireless experiments.Main Results.The simulated iRFW coil with a 40 mm radius positioned near the model forehead provided: a signal-to-noise ratio (SNR) comparable to that of a traditional RF coil with the same radius and position, a power absorbed by the human model within regulatory limits, and a gain pattern in the scanner bore resulting in a link budget of 51.1 dB between the coil and an AP located behind the scanner 3 m from the isocenter, which would be sufficient to wirelessly transfer MRI data acquired with a 16-channel coil array. The SNR, gain pattern, and link budget for initial simulations were validated by experimental measurements in an MRI scanner and anechoic chamber to provide confidence in this methodology. These results show that the iRFW coil design must be optimized within the scanner bore for the wireless transfer of MRI data.Significance.The MRI RF coil array coaxial cable assembly connected to the scanner increases patient setup time, can present a serious burn risk to patients and is an obstacle to the development of the next generation of lightweight, flexible or wearable coil arrays that provide an improved coil sensitivity for imaging. Significantly, the RF coaxial cables and corresponding receive chain electronics can be removed from within the scanner by integrating the iRFW coil design into an array for the wireless transmission of MRI data outside of the bore.

Duke Scholars

Published In

Phys Med Biol

DOI

EISSN

1361-6560

Publication Date

June 8, 2023

Volume

68

Issue

12

Location

England

Related Subject Headings

  • Signal-To-Noise Ratio
  • Radio Waves
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Equipment Design
  • 5105 Medical and biological physics
  • 1103 Clinical Sciences
  • 0903 Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Overson, D. K., Bresticker, J., Willey, D., Robb, F., Song, A. W., Truong, T.-K., & Darnell, D. (2023). Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data. Phys Med Biol, 68(12). https://doi.org/10.1088/1361-6560/acd614
Overson, Devon K., Julia Bresticker, Devin Willey, Fraser Robb, Allen W. Song, Trong-Kha Truong, and Dean Darnell. “Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data.Phys Med Biol 68, no. 12 (June 8, 2023). https://doi.org/10.1088/1361-6560/acd614.
Overson, Devon K., et al. “Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data.Phys Med Biol, vol. 68, no. 12, June 2023. Pubmed, doi:10.1088/1361-6560/acd614.
Overson DK, Bresticker J, Willey D, Robb F, Song AW, Truong T-K, Darnell D. Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data. Phys Med Biol. 2023 Jun 8;68(12).
Journal cover image

Published In

Phys Med Biol

DOI

EISSN

1361-6560

Publication Date

June 8, 2023

Volume

68

Issue

12

Location

England

Related Subject Headings

  • Signal-To-Noise Ratio
  • Radio Waves
  • Phantoms, Imaging
  • Nuclear Medicine & Medical Imaging
  • Magnetic Resonance Imaging
  • Humans
  • Equipment Design
  • 5105 Medical and biological physics
  • 1103 Clinical Sciences
  • 0903 Biomedical Engineering