Skip to main content

Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.

Publication ,  Journal Article
Lu, M-C; Deng, C; Greenwald, MF; Farsiu, S; Prajna, NV; Nallasamy, N; Pawar, M; Hart, JN; Sr, S; Kochar, P; Selvaraj, S; Levine, H ...
Published in: Cornea
April 2024

The aim of this study was to facilitate deep learning systems in image annotations for diagnosing keratitis type by developing an automated algorithm to classify slit-lamp photographs (SLPs) based on illumination technique.SLPs were collected from patients with corneal ulcer at Kellogg Eye Center, Bascom Palmer Eye Institute, and Aravind Eye Care Systems. Illumination techniques were slit beam, diffuse white light, diffuse blue light with fluorescein, and sclerotic scatter (ScS). Images were manually labeled for illumination and randomly split into training, validation, and testing data sets (70%:15%:15%). Classification algorithms including MobileNetV2, ResNet50, LeNet, AlexNet, multilayer perceptron, and k-nearest neighborhood were trained to distinguish 4 type of illumination techniques. The algorithm performances on the test data set were evaluated with 95% confidence intervals (CIs) for accuracy, F1 score, and area under the receiver operator characteristics curve (AUC-ROC), overall and by class (one-vs-rest).A total of 12,132 images from 409 patients were analyzed, including 41.8% (n = 5069) slit-beam photographs, 21.2% (2571) diffuse white light, 19.5% (2364) diffuse blue light, and 17.5% (2128) ScS. MobileNetV2 achieved the highest overall F1 score of 97.95% (CI, 97.94%-97.97%), AUC-ROC of 99.83% (99.72%-99.9%), and accuracy of 98.98% (98.97%-98.98%). The F1 scores for slit beam, diffuse white light, diffuse blue light, and ScS were 97.82% (97.80%-97.84%), 96.62% (96.58%-96.66%), 99.88% (99.87%-99.89%), and 97.59% (97.55%-97.62%), respectively. Slit beam and ScS were the 2 most frequently misclassified illumination.MobileNetV2 accurately labeled illumination of SLPs using a large data set of corneal images. Effective, automatic classification of SLPs is key to integrating deep learning systems for clinical decision support into practice workflows.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Cornea

DOI

EISSN

1536-4798

ISSN

0277-3740

Publication Date

April 2024

Volume

43

Issue

4

Start / End Page

419 / 424

Related Subject Headings

  • Slit Lamp
  • Ophthalmology & Optometry
  • Neural Networks, Computer
  • Lighting
  • Light
  • Humans
  • Cornea
  • 3212 Ophthalmology and optometry
  • 1113 Opthalmology and Optometry
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lu, M.-C., Deng, C., Greenwald, M. F., Farsiu, S., Prajna, N. V., Nallasamy, N., … and the AQUA Study Team. (2024). Automatic Classification of Slit-Lamp Photographs by Imaging Illumination. Cornea, 43(4), 419–424. https://doi.org/10.1097/ico.0000000000003318
Lu, Ming-Chen, Callie Deng, Miles F. Greenwald, Sina Farsiu, N Venkatesh Prajna, Nambi Nallasamy, Mercy Pawar, et al. “Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.Cornea 43, no. 4 (April 2024): 419–24. https://doi.org/10.1097/ico.0000000000003318.
Lu M-C, Deng C, Greenwald MF, Farsiu S, Prajna NV, Nallasamy N, et al. Automatic Classification of Slit-Lamp Photographs by Imaging Illumination. Cornea. 2024 Apr;43(4):419–24.
Lu, Ming-Chen, et al. “Automatic Classification of Slit-Lamp Photographs by Imaging Illumination.Cornea, vol. 43, no. 4, Apr. 2024, pp. 419–24. Epmc, doi:10.1097/ico.0000000000003318.
Lu M-C, Deng C, Greenwald MF, Farsiu S, Prajna NV, Nallasamy N, Pawar M, Hart JN, Sr S, Kochar P, Selvaraj S, Levine H, Amescua G, Sepulveda-Beltran PA, Niziol LM, Woodward MA, and the AQUA Study Team. Automatic Classification of Slit-Lamp Photographs by Imaging Illumination. Cornea. 2024 Apr;43(4):419–424.

Published In

Cornea

DOI

EISSN

1536-4798

ISSN

0277-3740

Publication Date

April 2024

Volume

43

Issue

4

Start / End Page

419 / 424

Related Subject Headings

  • Slit Lamp
  • Ophthalmology & Optometry
  • Neural Networks, Computer
  • Lighting
  • Light
  • Humans
  • Cornea
  • 3212 Ophthalmology and optometry
  • 1113 Opthalmology and Optometry
  • 1103 Clinical Sciences