Mimicking effects of cholesterol in lipid bilayer membranes by self-assembled amphiphilic block copolymers.
The effect of cholesterol on biological membranes is important in biochemistry. In this study, a polymer system is used to simulate the consequences of varying cholesterol content in membranes. The system consists of an AB-diblock copolymer, a hydrophilic homopolymer hA, and a hydrophobic rigid homopolymer C, corresponding to phospholipid, water, and cholesterol, respectively. The effect of the C-polymer content on the membrane is studied within the framework of a self-consistent field model. The results show that the liquid-crystal behavior of B and C has a great influence on the chemical potential of cholesterol in bilayer membranes. The effects of the interaction strength between components, characterized by the Flory-Huggins parameters and the Maier-Saupe parameter, were studied. Some consequences of adding a coil headgroup to the C-rod are presented. Results of our model are compared to experimental findings for cholesterol-containing lipid bilayer membranes.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Polymers
- Molecular Mimicry
- Lipid Bilayers
- Hydrophobic and Hydrophilic Interactions
- Crystallins
- Cholesterol
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Polymers
- Molecular Mimicry
- Lipid Bilayers
- Hydrophobic and Hydrophilic Interactions
- Crystallins
- Cholesterol
- Chemical Physics
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences