Skip to main content

Convergence for score-based generative modeling with polynomial complexity

Publication ,  Conference
Lee, H; Lu, J; Tan, Y
Published in: Advances in Neural Information Processing Systems
January 1, 2022

Score-based generative modeling (SGM) is a highly successful approach for learning a probability distribution from data and generating further samples. We prove the first polynomial convergence guarantees for the core mechanic behind SGM: drawing samples from a probability density p given a score estimate (an estimate of ∇ln p) that is accurate in L2(p). Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality. Our guarantee works for any smooth distribution and depends polynomially on its log-Sobolev constant. Using our guarantee, we give a theoretical analysis of score-based generative modeling, which transforms white-noise input into samples from a learned data distribution given score estimates at different noise scales. Our analysis gives theoretical grounding to the observation that an annealed procedure is required in practice to generate good samples, as our proof depends essentially on using annealing to obtain a warm start at each step. Moreover, we show that a predictor-corrector algorithm gives better convergence than using either portion alone.

Duke Scholars

Published In

Advances in Neural Information Processing Systems

ISSN

1049-5258

Publication Date

January 1, 2022

Volume

35

Related Subject Headings

  • 4611 Machine learning
  • 1702 Cognitive Sciences
  • 1701 Psychology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Lee, H., Lu, J., & Tan, Y. (2022). Convergence for score-based generative modeling with polynomial complexity. In Advances in Neural Information Processing Systems (Vol. 35).
Lee, H., J. Lu, and Y. Tan. “Convergence for score-based generative modeling with polynomial complexity.” In Advances in Neural Information Processing Systems, Vol. 35, 2022.
Lee H, Lu J, Tan Y. Convergence for score-based generative modeling with polynomial complexity. In: Advances in Neural Information Processing Systems. 2022.
Lee, H., et al. “Convergence for score-based generative modeling with polynomial complexity.” Advances in Neural Information Processing Systems, vol. 35, 2022.
Lee H, Lu J, Tan Y. Convergence for score-based generative modeling with polynomial complexity. Advances in Neural Information Processing Systems. 2022.

Published In

Advances in Neural Information Processing Systems

ISSN

1049-5258

Publication Date

January 1, 2022

Volume

35

Related Subject Headings

  • 4611 Machine learning
  • 1702 Cognitive Sciences
  • 1701 Psychology