Enhanced Detection of Charged <i>N</i>-Glycans in the Brain by Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometric Imaging.
N-linked glycosylation represents a structurally diverse, complex, co- and posttranslational protein modification that bridges metabolism and cellular signaling. Consequently, aberrant protein glycosylation is a hallmark of most pathological scenarios. Due to their complex nature and non-template-driven synthesis, the analysis of glycans is faced with several challenges, underlining the need for new and improved analytical technologies. Spatial profiling of N-glycans through direct imaging on tissue sections reveals the regio-specific and/or disease pathology correlating tissue N-glycans that serve as a disease glycoprint for diagnosis. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is a soft hybrid ionization technique that has been used for diverse mass spectrometry imaging (MSI) applications. Here, we report the first spatial analysis of the brain N-linked glycans by IR-MALDESI MSI, leading to a significant increase in the detection of the brain N-sialoglycans. A formalin-fixed paraffin-embedded mouse brain tissue was analyzed in negative ionization mode after tissue washing, antigen retrieval, and pneumatic application of PNGase F for enzymatic digestion of N-linked glycans. We report a comparative analysis of section thickness on the N-glycan detection using IR-MALDESI. One hundred thirty-six unique N-linked glycans were confidently identified in the brain tissue (with an additional 132 unique N-glycans, not reported in GlyConnect), where more than 50% contained sialic acid residues, which is approximately 3-fold higher than the previous reports. This work demonstrates the first application of IR-MALDESI in N-linked glycan imaging of the brain tissue, leading to a 2.5-fold increase in the in situ total brain N-glycan detection compared to the current gold standard of positive-mode matrix-assisted laser desorption/ionization mass spectrometry imaging. This is also the first report of the application of the MSI toward the identification of sulfoglycans in the rodent brain. Overall, IR-MALDESI-MSI presents a sensitive glycan detection platform to identify tissue-specific and/or disease-specific glycosignature in the brain while preserving the sialoglycans without any chemical derivatization.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Tissue Fixation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spectrometry, Mass, Electrospray Ionization
- Polysaccharides
- Mice
- Lasers
- Brain
- Animals
- Analytical Chemistry
- 4004 Chemical engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Tissue Fixation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spectrometry, Mass, Electrospray Ionization
- Polysaccharides
- Mice
- Lasers
- Brain
- Animals
- Analytical Chemistry
- 4004 Chemical engineering