Diffuse interface model for cell interaction and aggregation with Lennard-Jones type potential
This study introduces a phase-field model designed to simulate the interaction and aggregation of multicellular systems under flow conditions within a bounded spatial domain. The model incorporates a multi-dimensional Lennard-Jones potential to account for short-range repulsion and adhesive bonding between cells. To solve the governing equations while preserving energy law, a second-order accurate C0 finite element method is employed. The validity of the model is established through numerical tests, and experimental data from cell stretch tests is utilized for model calibration and validation. Additionally, the study investigates the impact of varying adhesion properties in red blood cells. Overall, this work presents a thermodynamically consistent and computationally efficient framework for simulating cell–cell and cell–wall interactions under flow conditions.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- Applied Mathematics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- Applied Mathematics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences