Skip to main content

Applied machine learning as a driver for polymeric biomaterials design.

Publication ,  Journal Article
McDonald, SM; Augustine, EK; Lanners, Q; Rudin, C; Catherine Brinson, L; Becker, ML
Published in: Nature communications
August 2023

Polymers are ubiquitous to almost every aspect of modern society and their use in medical products is similarly pervasive. Despite this, the diversity in commercial polymers used in medicine is stunningly low. Considerable time and resources have been extended over the years towards the development of new polymeric biomaterials which address unmet needs left by the current generation of medical-grade polymers. Machine learning (ML) presents an unprecedented opportunity in this field to bypass the need for trial-and-error synthesis, thus reducing the time and resources invested into new discoveries critical for advancing medical treatments. Current efforts pioneering applied ML in polymer design have employed combinatorial and high throughput experimental design to address data availability concerns. However, the lack of available and standardized characterization of parameters relevant to medicine, including degradation time and biocompatibility, represents a nearly insurmountable obstacle to ML-aided design of biomaterials. Herein, we identify a gap at the intersection of applied ML and biomedical polymer design, highlight current works at this junction more broadly and provide an outlook on challenges and future directions.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

August 2023

Volume

14

Issue

1

Start / End Page

4838

Related Subject Headings

  • Polymers
  • Biocompatible Materials
 

Citation

APA
Chicago
ICMJE
MLA
NLM
McDonald, S. M., Augustine, E. K., Lanners, Q., Rudin, C., Catherine Brinson, L., & Becker, M. L. (2023). Applied machine learning as a driver for polymeric biomaterials design. Nature Communications, 14(1), 4838. https://doi.org/10.1038/s41467-023-40459-8
McDonald, Samantha M., Emily K. Augustine, Quinn Lanners, Cynthia Rudin, L. Catherine Brinson, and Matthew L. Becker. “Applied machine learning as a driver for polymeric biomaterials design.Nature Communications 14, no. 1 (August 2023): 4838. https://doi.org/10.1038/s41467-023-40459-8.
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nature communications. 2023 Aug;14(1):4838.
McDonald, Samantha M., et al. “Applied machine learning as a driver for polymeric biomaterials design.Nature Communications, vol. 14, no. 1, Aug. 2023, p. 4838. Epmc, doi:10.1038/s41467-023-40459-8.
McDonald SM, Augustine EK, Lanners Q, Rudin C, Catherine Brinson L, Becker ML. Applied machine learning as a driver for polymeric biomaterials design. Nature communications. 2023 Aug;14(1):4838.

Published In

Nature communications

DOI

EISSN

2041-1723

ISSN

2041-1723

Publication Date

August 2023

Volume

14

Issue

1

Start / End Page

4838

Related Subject Headings

  • Polymers
  • Biocompatible Materials