ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*
Publication
, Journal Article
Chen, Z; Li, Y; Lu, J
Published in: SIAM Journal on Optimization
January 1, 2023
In this work, we analyze the global convergence property of a coordinate gradient descent with random choice of coordinates and stepsizes for nonconvex optimization problems. Under generic assumptions, we prove that the algorithm iterate will almost surely escape strict saddle points of the objective function. As a result, the algorithm is guaranteed to converge to local minima if all saddle points are strict. Our proof is based on viewing the coordinate descent algorithm as a nonlinear random dynamical system and a quantitative finite block analysis of its linearization around saddle points.
Duke Scholars
Published In
SIAM Journal on Optimization
DOI
ISSN
1052-6234
Publication Date
January 1, 2023
Volume
33
Issue
2
Start / End Page
713 / 738
Related Subject Headings
- Operations Research
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Chen, Z., Li, Y., & Lu, J. (2023). ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*. SIAM Journal on Optimization, 33(2), 713–738. https://doi.org/10.1137/21M1460375
Chen, Z., Y. Li, and J. Lu. “ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*.” SIAM Journal on Optimization 33, no. 2 (January 1, 2023): 713–38. https://doi.org/10.1137/21M1460375.
Chen Z, Li Y, Lu J. ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*. SIAM Journal on Optimization. 2023 Jan 1;33(2):713–38.
Chen, Z., et al. “ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*.” SIAM Journal on Optimization, vol. 33, no. 2, Jan. 2023, pp. 713–38. Scopus, doi:10.1137/21M1460375.
Chen Z, Li Y, Lu J. ON THE GLOBAL CONVERGENCE OF RANDOMIZED COORDINATE GRADIENT DESCENT FOR NONCONVEX OPTIMIZATION*. SIAM Journal on Optimization. 2023 Jan 1;33(2):713–738.
Published In
SIAM Journal on Optimization
DOI
ISSN
1052-6234
Publication Date
January 1, 2023
Volume
33
Issue
2
Start / End Page
713 / 738
Related Subject Headings
- Operations Research
- 4901 Applied mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics