Skip to main content

Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities.

Publication ,  Journal Article
Singh, R; Hie, BL; Narayan, A; Berger, B
Published in: Genome Biol
May 3, 2021

A complete understanding of biological processes requires synthesizing information across heterogeneous modalities, such as age, disease status, or gene expression. Technological advances in single-cell profiling have enabled researchers to assay multiple modalities simultaneously. We present Schema, which uses a principled metric learning strategy that identifies informative features in a modality to synthesize disparate modalities into a single coherent interpretation. We use Schema to infer cell types by integrating gene expression and chromatin accessibility data; demonstrate informative data visualizations that synthesize multiple modalities; perform differential gene expression analysis in the context of spatial variability; and estimate evolutionary pressure on peptide sequences.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Genome Biol

DOI

EISSN

1474-760X

Publication Date

May 3, 2021

Volume

22

Issue

1

Start / End Page

131

Location

England

Related Subject Headings

  • Transcriptome
  • Single-Cell Analysis
  • Organ Specificity
  • Machine Learning
  • Gene Expression Regulation
  • Gene Expression Profiling
  • Computational Biology
  • Chromatin Assembly and Disassembly
  • Chromatin
  • Bioinformatics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Singh, R., Hie, B. L., Narayan, A., & Berger, B. (2021). Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biol, 22(1), 131. https://doi.org/10.1186/s13059-021-02313-2
Singh, Rohit, Brian L. Hie, Ashwin Narayan, and Bonnie Berger. “Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities.Genome Biol 22, no. 1 (May 3, 2021): 131. https://doi.org/10.1186/s13059-021-02313-2.
Singh R, Hie BL, Narayan A, Berger B. Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biol. 2021 May 3;22(1):131.
Singh, Rohit, et al. “Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities.Genome Biol, vol. 22, no. 1, May 2021, p. 131. Pubmed, doi:10.1186/s13059-021-02313-2.
Singh R, Hie BL, Narayan A, Berger B. Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biol. 2021 May 3;22(1):131.

Published In

Genome Biol

DOI

EISSN

1474-760X

Publication Date

May 3, 2021

Volume

22

Issue

1

Start / End Page

131

Location

England

Related Subject Headings

  • Transcriptome
  • Single-Cell Analysis
  • Organ Specificity
  • Machine Learning
  • Gene Expression Regulation
  • Gene Expression Profiling
  • Computational Biology
  • Chromatin Assembly and Disassembly
  • Chromatin
  • Bioinformatics