Ultra-broadband low-frequency high-efficiency acoustic energy harvesting with metamaterial-enhanced loudspeakers
Acoustic energy harvesters (AEHs) open up opportunities to recycle noise waste and generate electricity. They provide potential power solutions to a wide range of sensors. However, the practicality of AEHs has long been limited by their narrow bandwidths and low efficiencies. In this study, we present an ultra-broadband AEH and a highly efficient AEH that transforms sound energy into usable electrical power. Our broadband device comprises an electrodynamic loudspeaker driver and an optimized acoustic metamaterial matching layer and is capable of converting 7.6% to 15.1% of total incident sound energy from 50 to 228 Hz. Moreover, we demonstrate that by replacing the loudspeaker surround with a lower-loss material such as PDMS, the energy conversion rate can be significantly increased to 67%. The proposed broadband AEH has a fractional bandwidth eight times the state-of-the-art, while the proposed highly efficient AEH has a peak efficiency three times the state-of-the-art. The outstanding performance makes our designs cost-effective and scalable solutions for noise reduction and power generation.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Applied Physics
- 51 Physical sciences
- 40 Engineering
- 10 Technology
- 09 Engineering
- 02 Physical Sciences