Posterior Computation with the Gibbs Zig-Zag Sampler
Publication
, Journal Article
Sachs, M; Sen, D; Lu, J; Dunson, D
Published in: Bayesian Analysis
January 1, 2023
An intriguing new class of piecewise deterministic Markov processes (PDMPs) has recently been proposed as an alternative to Markov chain Monte Carlo (MCMC). We propose a new class of PDMPs termed Gibbs zig-zag samplers, which allow parameters to be updated in blocks with a zig-zag sampler applied to certain parameters and traditional MCMC-style updates to others. We demonstrate the flexibility of this framework on posterior sampling for logistic models with shrinkage priors for high-dimensional regression and random effects, and provide conditions for geometric ergodicity and the validity of a central limit theorem.
Duke Scholars
Published In
Bayesian Analysis
DOI
EISSN
1931-6690
ISSN
1936-0975
Publication Date
January 1, 2023
Volume
18
Issue
3
Start / End Page
909 / 927
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics
Citation
APA
Chicago
ICMJE
MLA
NLM
Sachs, M., Sen, D., Lu, J., & Dunson, D. (2023). Posterior Computation with the Gibbs Zig-Zag Sampler. Bayesian Analysis, 18(3), 909–927. https://doi.org/10.1214/22-BA1319
Sachs, M., D. Sen, J. Lu, and D. Dunson. “Posterior Computation with the Gibbs Zig-Zag Sampler.” Bayesian Analysis 18, no. 3 (January 1, 2023): 909–27. https://doi.org/10.1214/22-BA1319.
Sachs M, Sen D, Lu J, Dunson D. Posterior Computation with the Gibbs Zig-Zag Sampler. Bayesian Analysis. 2023 Jan 1;18(3):909–27.
Sachs, M., et al. “Posterior Computation with the Gibbs Zig-Zag Sampler.” Bayesian Analysis, vol. 18, no. 3, Jan. 2023, pp. 909–27. Scopus, doi:10.1214/22-BA1319.
Sachs M, Sen D, Lu J, Dunson D. Posterior Computation with the Gibbs Zig-Zag Sampler. Bayesian Analysis. 2023 Jan 1;18(3):909–927.
Published In
Bayesian Analysis
DOI
EISSN
1931-6690
ISSN
1936-0975
Publication Date
January 1, 2023
Volume
18
Issue
3
Start / End Page
909 / 927
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics