BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.
Alzheimer's disease (AD) is a complex neurological disorder impairing multiple domains such as cognition and daily functions. To better understand the disease and its progression, many AD research studies collect multiple longitudinal outcomes that are strongly predictive of the onset of AD dementia. We propose a joint model based on a multivariate functional mixed model framework (referred to as MFMM-JM) that simultaneously models the multiple longitudinal outcomes and the time to dementia onset. We develop six functional forms to fully investigate the complex association between longitudinal outcomes and dementia onset. Moreover, we use the Bayesian methods for statistical inference and develop a dynamic prediction framework that provides accurate personalized predictions of disease progressions based on new subject-specific data. We apply the proposed MFMM-JM to two large ongoing AD studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC), and identify the functional forms with the best predictive performance. our method is also validated by extensive simulation studies with five settings.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 1403 Econometrics
- 0104 Statistics