Winding number of a Brownian particle on a ring under stochastic resetting
We consider a random walker on a ring, subjected to resetting at Poisson-distributed times to the initial position (the walker takes the shortest path along the ring to the initial position at resetting times). In the case of a Brownian random walker the mean first-completion time of a turn is expressed in closed form as a function of the resetting rate. The value is shorter than in the ordinary process if the resetting rate is low enough. Moreover, the mean first-completion time of a turn can be minimised in the resetting rate. At large time the distribution of winding numbers does not reach a steady state, which is in contrast with the non-compact case of a Brownian particle under resetting on the real line. The mean total number of turns and the variance of the net number of turns grow linearly with time, with a proportionality constant equal to the inverse of the mean first-completion time of a turn.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences