Functional groups affect physical and biological properties of dextran-based hydrogels.
Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Vascular Endothelial Growth Factor A
- Rats, Inbred Lew
- Rats
- Polyethylene Glycols
- Mechanical Phenomena
- Materials Testing
- Hydrogels
- Female
- Dextrans
- Cross-Linking Reagents
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Vascular Endothelial Growth Factor A
- Rats, Inbred Lew
- Rats
- Polyethylene Glycols
- Mechanical Phenomena
- Materials Testing
- Hydrogels
- Female
- Dextrans
- Cross-Linking Reagents