Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching.
Hydrogels have been widely used for 3-dimensional (3D) cell culture and tissue regeneration due to their tunable biochemical and physicochemical properties as well as their high water content, which resembles the aqueous microenvironment of the natural extracellular matrix. While many properties of natural hydrogel matrices are modifiable, their intrinsic isotropic structure limits the control over cellular organization, which is critical to restore tissue function. Here we report a generic approach to incorporate alignment topography inside the hydrogel matrix using a combination of electrical and mechanical stretching. Hydrogel fibres with uniaxial alignment were prepared from aqueous solutions of natural polymers such as alginate, fibrin, gelatin, and hyaluronic acid under ambient conditions. The unique internal alignment feature drastically enhances the mechanical properties of the hydrogel microfibres. Furthermore, the facile, organic solvent-free processing conditions are amenable to the incorporation of live cells within the hydrogel fibre or on the fibre surface; both approaches effectively induce cellular alignment. This work demonstrates a versatile and scalable strategy to create aligned hydrogel microfibres from various natural polymers.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Scattering, Small Angle
- Polymers
- Microscopy, Fluorescence
- Microscopy, Electron, Scanning
- Microscopy, Confocal
- Hydrogels
- Cellular Microenvironment
- Biomedical Engineering
- Biocompatible Materials
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Scattering, Small Angle
- Polymers
- Microscopy, Fluorescence
- Microscopy, Electron, Scanning
- Microscopy, Confocal
- Hydrogels
- Cellular Microenvironment
- Biomedical Engineering
- Biocompatible Materials