Skip to main content

Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor.

Publication ,  Journal Article
Fu, Z; Wang, F; Liu, X; Hu, J; Su, J; Lu, X; Lu, A; Cho, JM; Symons, JD; Zou, C-J; Yang, T
Published in: Clin Sci (Lond)
March 26, 2021

Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent stimulation of the Ang II type 1 receptor (AT1R). Here we assessed the role of soluble (pro)renin receptor (sPRR), a product of site-1 protease-mediated cleavage of (pro)renin receptor (PRR), as a possible ligand of the AT1R in mediating: (i) endothelial cell dysfunction in vitro and (ii) arterial dysfunction in mice with diet-induced obesity. Primary human umbilical vein endothelial cells (HUVECs) treated with a recombinant histidine-tagged sPRR (sPRR-His) exhibited IκBα degradation concurrent with NF-κB p65 activation. These responses were secondary to sPRR-His evoked elevations in Nox4-derived H2O2 production that resulted in inflammation, apoptosis and reduced NO production. Each of these sPRR-His-evoked responses was attenuated by AT1R inhibition using Losartan (Los) but not ACE inhibition using captopril (Cap). Further mechanistic exploration revealed that sPRR-His activated AT1R downstream Gq signaling pathway. Immunoprecipitation coupled with autoradiography experiments and radioactive ligand competitive binding assays indicate sPRR directly interacts with AT1R via Lysine199 and Asparagine295. Important translational relevance was provided by findings from obese C57/BL6 mice that sPRR-His evoked endothelial dysfunction was sensitive to Los. Besides, sPRR-His elevated blood pressure in obese C57/BL6 mice, an effect that was reversed by concurrent treatment with Los but not Cap. Collectively, we provide solid evidence that the AT1R mediates the functions of sPRR during obesity-related hypertension. Inhibiting sPRR signaling should be considered further as a potential therapeutic intervention in the treatment and prevention of cardiovascular disorders involving elevated blood pressure.

Duke Scholars

Published In

Clin Sci (Lond)

DOI

EISSN

1470-8736

Publication Date

March 26, 2021

Volume

135

Issue

6

Start / End Page

793 / 810

Location

England

Related Subject Headings

  • Renin-Angiotensin System
  • Receptors, Cell Surface
  • Receptor, Angiotensin, Type 1
  • Prorenin Receptor
  • Obesity
  • Mice, Inbred C57BL
  • Mice
  • Male
  • Losartan
  • Hypertension
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fu, Z., Wang, F., Liu, X., Hu, J., Su, J., Lu, X., … Yang, T. (2021). Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci (Lond), 135(6), 793–810. https://doi.org/10.1042/CS20201047
Fu, Ziwei, Fei Wang, Xiyang Liu, Jiajia Hu, Jiahui Su, Xiaohan Lu, Aihua Lu, et al. “Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor.Clin Sci (Lond) 135, no. 6 (March 26, 2021): 793–810. https://doi.org/10.1042/CS20201047.
Fu, Ziwei, et al. “Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor.Clin Sci (Lond), vol. 135, no. 6, Mar. 2021, pp. 793–810. Pubmed, doi:10.1042/CS20201047.
Fu Z, Wang F, Liu X, Hu J, Su J, Lu X, Lu A, Cho JM, Symons JD, Zou C-J, Yang T. Soluble (pro)renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci (Lond). 2021 Mar 26;135(6):793–810.

Published In

Clin Sci (Lond)

DOI

EISSN

1470-8736

Publication Date

March 26, 2021

Volume

135

Issue

6

Start / End Page

793 / 810

Location

England

Related Subject Headings

  • Renin-Angiotensin System
  • Receptors, Cell Surface
  • Receptor, Angiotensin, Type 1
  • Prorenin Receptor
  • Obesity
  • Mice, Inbred C57BL
  • Mice
  • Male
  • Losartan
  • Hypertension