Fast oscillations >40 Hz localize the epileptogenic zone: An electrical source imaging study using high-density electroencephalography.
OBJECTIVE: Fast Oscillations (FO) >40 Hz are a promising biomarker of the epileptogenic zone (EZ). Evidence using scalp electroencephalography (EEG) remains scarce. We assessed if electrical source imaging of FO using 256-channel high-density EEG (HD-EEG) is useful for EZ identification. METHODS: We analyzed HD-EEG recordings of 10 focal drug-resistant epilepsy patients with seizure-free postsurgical outcome. We marked FO candidate events at the time of epileptic spikes and verified them by screening for an isolated peak in the time-frequency plot. We performed electrical source imaging of spikes and FO within the Maximum Entropy of the Mean framework. Source localization maps were validated against the surgical cavity. RESULTS: We identified FO in five out of 10 patients who had a superficial or intermediate deep generator. The maximum of the FO maps was localized inside the cavity in all patients (100%). Analysis with a reduced electrode coverage using the 10-10 and 10-20 system showed a decreased localization accuracy of 60% and 40% respectively. CONCLUSIONS: FO recorded with HD-EEG localize the EZ. HD-EEG is better suited to detect and localize FO than conventional EEG approaches. SIGNIFICANCE: This study acts as proof-of-concept that FO localization using 256-channel HD-EEG is a viable marker of the EZ.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Neurology & Neurosurgery
- Magnetic Resonance Imaging
- Humans
- Electroencephalography
- Drug Resistant Epilepsy
- Child
- Brain Mapping
- Adult
- Adolescent
- 3209 Neurosciences
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Neurology & Neurosurgery
- Magnetic Resonance Imaging
- Humans
- Electroencephalography
- Drug Resistant Epilepsy
- Child
- Brain Mapping
- Adult
- Adolescent
- 3209 Neurosciences