Skip to main content

Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.

Publication ,  Conference
Zhang, L; Wu, J; Wang, L; Wang, L; Steffens, DC; Qiu, S; Potter, GG; Liu, M
Published in: Med Image Comput Comput Assist Interv
October 2023

Brain structural MRI has been widely used for assessing future progression of cognitive impairment (CI) based on learning-based methods. Previous studies generally suffer from the limited number of labeled training data, while there exists a huge amount of MRIs in large-scale public databases. Even without task-specific label information, brain anatomical structures provided by these MRIs can be used to boost learning performance intuitively. Unfortunately, existing research seldom takes advantage of such brain anatomy prior. To this end, this paper proposes a brain anatomy-guided representation (BAR) learning framework for assessing the clinical progression of cognitive impairment with T1-weighted MRIs. The BAR consists of a pretext model and a downstream model, with a shared brain anatomy-guided encoder for MRI feature extraction. The pretext model also contains a decoder for brain tissue segmentation, while the downstream model relies on a predictor for classification. We first train the pretext model through a brain tissue segmentation task on 9,544 auxiliary T1-weighted MRIs, yielding a generalizable encoder. The downstream model with the learned encoder is further fine-tuned on target MRIs for prediction tasks. We validate the proposed BAR on two CI-related studies with a total of 391 subjects with T1-weighted MRIs. Experimental results suggest that the BAR outperforms several state-of-the-art (SOTA) methods. The source code and pre-trained models are available at https://github.com/goodaycoder/BAR.

Duke Scholars

Published In

Med Image Comput Comput Assist Interv

DOI

Publication Date

October 2023

Volume

14227

Start / End Page

109 / 119

Location

Germany

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Zhang, L., Wu, J., Wang, L., Steffens, D. C., Qiu, S., Potter, G. G., & Liu, M. (2023). Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI. In Med Image Comput Comput Assist Interv (Vol. 14227, pp. 109–119). Germany. https://doi.org/10.1007/978-3-031-43993-3_11
Zhang, Lintao, Jinjian Wu, Lihong Wang, Li Wang, David C. Steffens, Shijun Qiu, Guy G. Potter, and Mingxia Liu. “Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.” In Med Image Comput Comput Assist Interv, 14227:109–19, 2023. https://doi.org/10.1007/978-3-031-43993-3_11.
Zhang L, Wu J, Wang L, Steffens DC, Qiu S, Potter GG, et al. Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI. In: Med Image Comput Comput Assist Interv. 2023. p. 109–19.
Zhang, Lintao, et al. “Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI.Med Image Comput Comput Assist Interv, vol. 14227, 2023, pp. 109–19. Pubmed, doi:10.1007/978-3-031-43993-3_11.
Zhang L, Wu J, Wang L, Steffens DC, Qiu S, Potter GG, Liu M. Brain Anatomy-Guided MRI Analysis for Assessing Clinical Progression of Cognitive Impairment with Structural MRI. Med Image Comput Comput Assist Interv. 2023. p. 109–119.

Published In

Med Image Comput Comput Assist Interv

DOI

Publication Date

October 2023

Volume

14227

Start / End Page

109 / 119

Location

Germany

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences