Skip to main content
Journal cover image

In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology.

Publication ,  Journal Article
Torso, M; Ridgway, GR; Valotti, M; Hardingham, I; Chance, SA; National Alzheimer’s Coordinating Center; Alzheimer’s Disease Neuroimaging Initiative
Published in: Alzheimers Res Ther
October 4, 2023

BACKGROUND: There has been increasing interest in cortical microstructure as a complementary and earlier measure of neurodegeneration than macrostructural atrophy, but few papers have related cortical diffusion imaging to post-mortem neuropathology. This study aimed to characterise the associations between the main Alzheimer's disease (AD) neuropathological hallmarks and multiple cortical microstructural measures from in vivo diffusion MRI. Comorbidities and co-pathologies were also investigated. METHODS: Forty-three autopsy cases (8 cognitively normal, 9 mild cognitive impairment, 26 AD) from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative databases were included. Structural and diffusion MRI scans were analysed to calculate cortical minicolumn-related measures (AngleR, PerpPD+, and ParlPD) and mean diffusivity (MD). Neuropathological hallmarks comprised Thal phase, Braak stage, neuritic plaques, and combined AD neuropathological changes (ADNC-the "ABC score" from NIA-AA recommendations). Regarding comorbidities, relationships between cortical microstructure and severity of white matter rarefaction (WMr), cerebral amyloid angiopathy (CAA), atherosclerosis of the circle of Willis (ACW), and locus coeruleus hypopigmentation (LCh) were investigated. Finally, the effect of coexistent pathologies-Lewy body disease and TAR DNA-binding protein 43 (TDP-43)-on cortical microstructure was assessed. RESULTS: Cortical diffusivity measures were significantly associated with Thal phase, Braak stage, ADNC, and LCh. Thal phase was associated with AngleR in temporal areas, while Braak stage was associated with PerpPD+ in a wide cortical pattern, involving mainly temporal and limbic areas. A similar association was found between ADNC (ABC score) and PerpPD+. LCh was associated with PerpPD+, ParlPD, and MD. Co-existent neuropathologies of Lewy body disease and TDP-43 exhibited significantly reduced AngleR and MD compared to ADNC cases without co-pathology. CONCLUSIONS: Cortical microstructural diffusion MRI is sensitive to AD neuropathology. The associations with the LCh suggest that cortical diffusion measures may indirectly reflect the severity of locus coeruleus neuron loss, perhaps mediated by the severity of microglial activation and tau spreading across the brain. Recognizing the impact of co-pathologies is important for diagnostic and therapeutic decision-making. Microstructural markers of neurodegeneration, sensitive to the range of histopathological features of amyloid, tau, and monoamine pathology, offer a more complete picture of cortical changes across AD than conventional structural atrophy.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Alzheimers Res Ther

DOI

EISSN

1758-9193

Publication Date

October 4, 2023

Volume

15

Issue

1

Start / End Page

165

Location

England

Related Subject Headings

  • Lewy Body Disease
  • Humans
  • DNA-Binding Proteins
  • Brain
  • Atrophy
  • Alzheimer Disease
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
  • 11 Medical and Health Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Torso, M., Ridgway, G. R., Valotti, M., Hardingham, I., Chance, S. A., National Alzheimer’s Coordinating Center, & Alzheimer’s Disease Neuroimaging Initiative. (2023). In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther, 15(1), 165. https://doi.org/10.1186/s13195-023-01309-3
Torso, Mario, Gerard R. Ridgway, Michele Valotti, Ian Hardingham, Steven A. Chance, National Alzheimer’s Coordinating Center, and Alzheimer’s Disease Neuroimaging Initiative. “In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology.Alzheimers Res Ther 15, no. 1 (October 4, 2023): 165. https://doi.org/10.1186/s13195-023-01309-3.
Torso M, Ridgway GR, Valotti M, Hardingham I, Chance SA, National Alzheimer’s Coordinating Center, et al. In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther. 2023 Oct 4;15(1):165.
Torso, Mario, et al. “In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology.Alzheimers Res Ther, vol. 15, no. 1, Oct. 2023, p. 165. Pubmed, doi:10.1186/s13195-023-01309-3.
Torso M, Ridgway GR, Valotti M, Hardingham I, Chance SA, National Alzheimer’s Coordinating Center, Alzheimer’s Disease Neuroimaging Initiative. In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther. 2023 Oct 4;15(1):165.
Journal cover image

Published In

Alzheimers Res Ther

DOI

EISSN

1758-9193

Publication Date

October 4, 2023

Volume

15

Issue

1

Start / End Page

165

Location

England

Related Subject Headings

  • Lewy Body Disease
  • Humans
  • DNA-Binding Proteins
  • Brain
  • Atrophy
  • Alzheimer Disease
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
  • 11 Medical and Health Sciences