Skip to main content

Predicting master transcription factors from pan-cancer expression data.

Publication ,  Journal Article
Reddy, J; Fonseca, MAS; Corona, RI; Nameki, R; Segato Dezem, F; Klein, IA; Chang, H; Chaves-Moreira, D; Afeyan, LK; Malta, TM; Lin, X; Long, H ...
Published in: Science advances
November 2021

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

Duke Scholars

Published In

Science advances

DOI

EISSN

2375-2548

ISSN

2375-2548

Publication Date

November 2021

Volume

7

Issue

48

Start / End Page

eabf6123
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Reddy, J., Fonseca, M. A. S., Corona, R. I., Nameki, R., Segato Dezem, F., Klein, I. A., … Lawrenson, K. (2021). Predicting master transcription factors from pan-cancer expression data. Science Advances, 7(48), eabf6123. https://doi.org/10.1126/sciadv.abf6123
Reddy, Jessica, Marcos A. S. Fonseca, Rosario I. Corona, Robbin Nameki, Felipe Segato Dezem, Isaac A. Klein, Heidi Chang, et al. “Predicting master transcription factors from pan-cancer expression data.Science Advances 7, no. 48 (November 2021): eabf6123. https://doi.org/10.1126/sciadv.abf6123.
Reddy J, Fonseca MAS, Corona RI, Nameki R, Segato Dezem F, Klein IA, et al. Predicting master transcription factors from pan-cancer expression data. Science advances. 2021 Nov;7(48):eabf6123.
Reddy, Jessica, et al. “Predicting master transcription factors from pan-cancer expression data.Science Advances, vol. 7, no. 48, Nov. 2021, p. eabf6123. Epmc, doi:10.1126/sciadv.abf6123.
Reddy J, Fonseca MAS, Corona RI, Nameki R, Segato Dezem F, Klein IA, Chang H, Chaves-Moreira D, Afeyan LK, Malta TM, Lin X, Abbasi F, Font-Tello A, Sabedot T, Cejas P, Rodríguez-Malavé N, Seo J-H, Lin D-C, Matulonis U, Karlan BY, Gayther SA, Pasaniuc B, Gusev A, Noushmehr H, Long H, Freedman ML, Drapkin R, Young RA, Abraham BJ, Lawrenson K. Predicting master transcription factors from pan-cancer expression data. Science advances. 2021 Nov;7(48):eabf6123.

Published In

Science advances

DOI

EISSN

2375-2548

ISSN

2375-2548

Publication Date

November 2021

Volume

7

Issue

48

Start / End Page

eabf6123