Skip to main content

Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory.

Publication ,  Journal Article
Huang, S; Howard, CM; Hovhannisyan, M; Ritchey, M; Cabeza, R; Davis, SW
Published in: J Neurosci
January 3, 2024

The hippocampus plays a central role as a coordinate system or index of information stored in neocortical loci. Nonetheless, it remains unclear how hippocampal processes integrate with cortical information to facilitate successful memory encoding. Thus, the goal of the current study was to identify specific hippocampal-cortical interactions that support object encoding. We collected fMRI data while 19 human participants (7 female and 12 male) encoded images of real-world objects and tested their memory for object concepts and image exemplars (i.e., conceptual and perceptual memory). Representational similarity analysis revealed robust representations of visual and semantic information in canonical visual (e.g., occipital cortex) and semantic (e.g., angular gyrus) regions in the cortex, but not in the hippocampus. Critically, hippocampal functions modulated the mnemonic impact of cortical representations that are most pertinent to future memory demands, or transfer-appropriate representations Subsequent perceptual memory was best predicted by the strength of visual representations in ventromedial occipital cortex in coordination with hippocampal activity and pattern information during encoding. In parallel, subsequent conceptual memory was best predicted by the strength of semantic representations in left inferior frontal gyrus and angular gyrus in coordination with either hippocampal activity or semantic representational strength during encoding. We found no evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory (i.e., no hippocampal interactions with cortical visual/semantic representations supported conceptual/perceptual memory). Collectively, these results suggest that diverse hippocampal functions flexibly modulate cortical representations of object properties to satisfy distinct future memory demands.Significance Statement The hippocampus is theorized to index pieces of information stored throughout the cortex to support episodic memory. Yet how hippocampal processes integrate with cortical representation of stimulus information remains unclear. Using fMRI, we examined various forms of hippocampal-cortical interactions during object encoding in relation to subsequent performance on conceptual and perceptual memory tests. Our results revealed novel hippocampal-cortical interactions that utilize semantic and visual representations in transfer-appropriate manners: conceptual memory supported by hippocampal modulation of frontoparietal semantic representations, and perceptual memory supported by hippocampal modulation of occipital visual representations. These findings provide important insights into the neural mechanisms underlying the formation of information-rich episodic memory and underscore the value of studying the flexible interplay between brain regions for complex cognition.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

January 3, 2024

Volume

44

Issue

1

Location

United States

Related Subject Headings

  • Prefrontal Cortex
  • Parietal Lobe
  • Neurology & Neurosurgery
  • Memory, Episodic
  • Male
  • Magnetic Resonance Imaging
  • Humans
  • Hippocampus
  • Female
  • Brain Mapping
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Huang, S., Howard, C. M., Hovhannisyan, M., Ritchey, M., Cabeza, R., & Davis, S. W. (2024). Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory. J Neurosci, 44(1). https://doi.org/10.1523/JNEUROSCI.1135-23.2023
Huang, Shenyang, Cortney M. Howard, Mariam Hovhannisyan, Maureen Ritchey, Roberto Cabeza, and Simon W. Davis. “Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory.J Neurosci 44, no. 1 (January 3, 2024). https://doi.org/10.1523/JNEUROSCI.1135-23.2023.
Huang S, Howard CM, Hovhannisyan M, Ritchey M, Cabeza R, Davis SW. Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory. J Neurosci. 2024 Jan 3;44(1).
Huang, Shenyang, et al. “Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory.J Neurosci, vol. 44, no. 1, Jan. 2024. Pubmed, doi:10.1523/JNEUROSCI.1135-23.2023.
Huang S, Howard CM, Hovhannisyan M, Ritchey M, Cabeza R, Davis SW. Hippocampal Functions Modulate Transfer-Appropriate Cortical Representations Supporting Subsequent Memory. J Neurosci. 2024 Jan 3;44(1).

Published In

J Neurosci

DOI

EISSN

1529-2401

Publication Date

January 3, 2024

Volume

44

Issue

1

Location

United States

Related Subject Headings

  • Prefrontal Cortex
  • Parietal Lobe
  • Neurology & Neurosurgery
  • Memory, Episodic
  • Male
  • Magnetic Resonance Imaging
  • Humans
  • Hippocampus
  • Female
  • Brain Mapping