Skip to main content

Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase.

Publication ,  Journal Article
Chen, B; MacAlpine, HK; Hartemink, AJ; MacAlpine, DM
Published in: Genome Res
December 27, 2023

Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Genome Res

DOI

EISSN

1549-5469

Publication Date

December 27, 2023

Volume

33

Issue

12

Start / End Page

2108 / 2118

Location

United States

Related Subject Headings

  • Transcription, Genetic
  • Saccharomyces cerevisiae Proteins
  • Saccharomyces cerevisiae
  • S Phase
  • Nucleosomes
  • Kinetics
  • Histones
  • Gene Expression Regulation, Fungal
  • DNA Replication
  • Chromatin Assembly and Disassembly
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chen, B., MacAlpine, H. K., Hartemink, A. J., & MacAlpine, D. M. (2023). Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res, 33(12), 2108–2118. https://doi.org/10.1101/gr.278273.123
Chen, Boning, Heather K. MacAlpine, Alexander J. Hartemink, and David M. MacAlpine. “Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase.Genome Res 33, no. 12 (December 27, 2023): 2108–18. https://doi.org/10.1101/gr.278273.123.
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res. 2023 Dec 27;33(12):2108–18.
Chen, Boning, et al. “Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase.Genome Res, vol. 33, no. 12, Dec. 2023, pp. 2108–18. Pubmed, doi:10.1101/gr.278273.123.
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res. 2023 Dec 27;33(12):2108–2118.

Published In

Genome Res

DOI

EISSN

1549-5469

Publication Date

December 27, 2023

Volume

33

Issue

12

Start / End Page

2108 / 2118

Location

United States

Related Subject Headings

  • Transcription, Genetic
  • Saccharomyces cerevisiae Proteins
  • Saccharomyces cerevisiae
  • S Phase
  • Nucleosomes
  • Kinetics
  • Histones
  • Gene Expression Regulation, Fungal
  • DNA Replication
  • Chromatin Assembly and Disassembly