Opportunities in Assessing and Regulating Organohalogen Flame Retardants (OFRs) as a Class in Consumer Products.
In 2015, the U.S. Consumer Product Safety Commission (CPSC) received and then, in 2017, granted a petition under the Federal Hazardous Substances Act to declare certain groups of consumer products as banned hazardous substances if they contain nonpolymeric, additive organohalogen flame retardants (OFRs). The petitioners asked the CPSC to regulate OFRs as a single chemical class with similar health effects. The CPSC later sponsored a National Academy of Sciences, Engineering, and Medicine (NASEM) report in 2019, which ultimately identified 161 OFRs and grouped them into 14 subclasses based on chemical structural similarity. In 2021, a follow-up discussion was held among a group of scientists from both inside and outside of the CPSC for current research on OFRs and to promote collaboration that could increase public awareness of CPSC work and support the class-based approach for the CPSC's required risk assessment of OFRs.Given the extensive data collected to date, there is a need to synthesize what is known about OFR and how class-based regulations have previously managed this information. This commentary discusses both OFR exposure and OFR toxicity and fills some gaps for OFR exposure that were not within the scope of the NASEM report. The objective of this commentary is therefore to provide an overview of the OFR research presented at SOT 2021, explore opportunities and challenges associated with OFR risk assessment, and inform CPSC's work on an OFR class-based approach.A class-based approach for regulating OFRs can be successful. Expanding the use of read-across and the use of New Approach Methodologies (NAMs) in assessing and regulating existing chemicals was considered as a necessary part of the class-based process. Recommendations for OFR class-based risk assessment include the need to balance fire and chemical safety and to protect vulnerable populations, including children and pregnant women. The authors also suggest the CPSC should consider global, federal, and state OFR regulations. The lack of data or lack of concordance in toxicity data could present significant hurdles for some OFR subclasses. The potential for cumulative risks within or between subclasses, OFR mixtures, and metabolites common to more than one OFR all add extra complexity for class-based risk assessment. This commentary discusses scientific and regulatory challenges for a class-based approach suggested by NASEM. This commentary is offered as a resource for anyone performing class-based assessments and to provide potential collaboration opportunities for OFR stakeholders. https://doi.org/10.1289/EHP12725.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- United States
- Toxicology
- Risk Assessment
- Pregnancy
- Humans
- Hazardous Substances
- Flame Retardants
- Female
- Consumer Product Safety
- Child
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- United States
- Toxicology
- Risk Assessment
- Pregnancy
- Humans
- Hazardous Substances
- Flame Retardants
- Female
- Consumer Product Safety
- Child