Skip to main content

APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability.

Publication ,  Journal Article
Kawale, AS; Ran, X; Patel, PS; Saxena, S; Lawrence, MS; Zou, L
Published in: Sci Adv
January 19, 2024

Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.

Duke Scholars

Published In

Sci Adv

DOI

EISSN

2375-2548

Publication Date

January 19, 2024

Volume

10

Issue

3

Start / End Page

eadk2771

Location

United States

Related Subject Headings

  • Proteins
  • Poly(ADP-ribose) Polymerase Inhibitors
  • DNA, Single-Stranded
  • DNA Replication
  • DNA
  • Cytidine Deaminase
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kawale, A. S., Ran, X., Patel, P. S., Saxena, S., Lawrence, M. S., & Zou, L. (2024). APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. Sci Adv, 10(3), eadk2771. https://doi.org/10.1126/sciadv.adk2771
Kawale, Ajinkya S., Xiaojuan Ran, Parasvi S. Patel, Sneha Saxena, Michael S. Lawrence, and Lee Zou. “APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability.Sci Adv 10, no. 3 (January 19, 2024): eadk2771. https://doi.org/10.1126/sciadv.adk2771.
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. Sci Adv. 2024 Jan 19;10(3):eadk2771.
Kawale, Ajinkya S., et al. “APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability.Sci Adv, vol. 10, no. 3, Jan. 2024, p. eadk2771. Pubmed, doi:10.1126/sciadv.adk2771.
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. Sci Adv. 2024 Jan 19;10(3):eadk2771.

Published In

Sci Adv

DOI

EISSN

2375-2548

Publication Date

January 19, 2024

Volume

10

Issue

3

Start / End Page

eadk2771

Location

United States

Related Subject Headings

  • Proteins
  • Poly(ADP-ribose) Polymerase Inhibitors
  • DNA, Single-Stranded
  • DNA Replication
  • DNA
  • Cytidine Deaminase