Generalized Video Anomaly Event Detection: Systematic Taxonomy and Comparison of Deep Models
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance systems, enabling the temporal or spatial identification of anomalous events within videos. While existing reviews predominantly concentrate on conventional unsupervised methods, they often overlook the emergence of weakly-supervised and fully-unsupervised approaches. To address this gap, this survey extends the conventional scope of VAD beyond unsupervised methods, encompassing a broader spectrum termed Generalized Video Anomaly Event Detection (GVAED). By skillfully incorporating recent advancements rooted in diverse assumptions and learning frameworks, this survey introduces an intuitive taxonomy that seamlessly navigates through unsupervised, weakly-supervised, supervised and fully-unsupervised VAD methodologies, elucidating the distinctions and interconnections within these research trajectories. In addition, this survey facilitates prospective researchers by assembling a compilation of research resources, including public datasets, available codebases, programming tools, and pertinent literature. Furthermore, this survey quantitatively assesses model performance, delves into research challenges and directions, and outlines potential avenues for future exploration.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 08 Information and Computing Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Information Systems
- 46 Information and computing sciences
- 08 Information and Computing Sciences