Zero-Dimensional Cs3BiX6 (X = Br, Cl) Single Crystal Films with Second Harmonic Generation.
The development of atomically thin single crystal films is necessary to potential applications in the 2D semiconductor field, and it is significant to explore new physical properties in low-dimensional semiconductors. Since, zero-dimensional (0D) materials without natural layering are connected by strong chemical bonds, it is challengeable to break symmetry and grow 0D Cs3BiX6 (X = Br, Cl) single crystal thin films. Here, we report the successful growth of 0D Cs3BiX6 (X = Br, Cl) single crystal films using a solvent evaporation crystallization strategy. Their phases and structures are both well evaluated to confirm 0D Cs3BiX6 (X = Br, Cl) single crystal films. Remarkably, the chemical potential dependent morphology evolution phenomenon is observed. It gives rise to morphology changes of Cs3BiBr6 films from rhombus to hexagon as BiBr3 concentration increased. Additionally, the robust second harmonic generation signal is detected in the Cs3BiBr6 single crystal film, demonstrating the broken symmetry originated from decreased dimension or shape change.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 4016 Materials engineering
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0204 Condensed Matter Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
- 5104 Condensed matter physics
- 4018 Nanotechnology
- 4016 Materials engineering
- 1007 Nanotechnology
- 0912 Materials Engineering
- 0204 Condensed Matter Physics