Skip to main content

A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease

Publication ,  Journal Article
Inglese, M; Patel, N; Linton-Reid, K; Loreto, F; Win, Z; Perry, RJ; Carswell, C; Grech-Sollars, M; Crum, WR; Lu, H; Malhotra, PA; Silbert, LC ...
Published in: Communications Medicine
December 1, 2022

Background: Alzheimer’s disease, the most common cause of dementia, causes a progressive and irreversible deterioration of cognition that can sometimes be difficult to diagnose, leading to suboptimal patient care. Methods: We developed a predictive model that computes multi-regional statistical morpho-functional mesoscopic traits from T1-weighted MRI scans, with or without cognitive scores. For each patient, a biomarker called “Alzheimer’s Predictive Vector” (ApV) was derived using a two-stage least absolute shrinkage and selection operator (LASSO). Results: The ApV reliably discriminates between people with (ADrp) and without (nADrp) Alzheimer’s related pathologies (98% and 81% accuracy between ADrp - including the early form, mild cognitive impairment - and nADrp in internal and external hold-out test sets, respectively), without any a priori assumptions or need for neuroradiology reads. The new test is superior to standard hippocampal atrophy (26% accuracy) and cerebrospinal fluid beta amyloid measure (62% accuracy). A multiparametric analysis compared DTI-MRI derived fractional anisotropy, whose readout of neuronal loss agrees with ADrp phenotype, and SNPrs2075650 is significantly altered in patients with ADrp-like phenotype. Conclusions: This new data analytic method demonstrates potential for increasing accuracy of Alzheimer diagnosis.

Duke Scholars

Published In

Communications Medicine

DOI

EISSN

2730-664X

Publication Date

December 1, 2022

Volume

2

Issue

1
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Inglese, M., Patel, N., Linton-Reid, K., Loreto, F., Win, Z., Perry, R. J., … Singleton-Garvin, J. (2022). A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease. Communications Medicine, 2(1). https://doi.org/10.1038/s43856-022-00133-4
Inglese, M., N. Patel, K. Linton-Reid, F. Loreto, Z. Win, R. J. Perry, C. Carswell, et al. “A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease.” Communications Medicine 2, no. 1 (December 1, 2022). https://doi.org/10.1038/s43856-022-00133-4.
Inglese M, Patel N, Linton-Reid K, Loreto F, Win Z, Perry RJ, et al. A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease. Communications Medicine. 2022 Dec 1;2(1).
Inglese, M., et al. “A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease.” Communications Medicine, vol. 2, no. 1, Dec. 2022. Scopus, doi:10.1038/s43856-022-00133-4.
Inglese M, Patel N, Linton-Reid K, Loreto F, Win Z, Perry RJ, Carswell C, Grech-Sollars M, Crum WR, Lu H, Malhotra PA, Silbert LC, Lind B, Crissey R, Kaye JA, Carter R, Dolen S, Quinn J, Schneider LS, Pawluczyk S, Becerra M, Teodoro L, Dagerman K, Spann BM, Brewer J, Vanderswag H, Fleisher A, Ziolkowski J, Heidebrink JL, Zbizek-Nulph, Lord JL, Zbizek-Nulph L, Petersen R, Mason SS, Albers CS, Knopman D, Johnson K, Villanueva-Meyer J, Pavlik V, Pacini N, Lamb A, Kass JS, Doody RS, Shibley V, Chowdhury M, Rountree S, Dang M, Stern Y, Honig LS, Mintz A, Ances B, Morris JC, Winkfield D, Carroll M, Stobbs-Cucchi G, Oliver A, Creech ML, Mintun MA, Schneider S, Geldmacher D, Love MN, Griffith R, Clark D, Brockington J, Marson D, Grossman H, Goldstein MA, Greenberg J, Mitsis E, Shah RC, Lamar M, Sood A, Blanchard KS, Fleischman D, Arfanakis K, Samuels P, Duara R, Greig-Custo MT, Rodriguez R, Albert M, Varon D, Onyike C, Farrington L, Rudow S, Brichko R, Greig MT, Kielb S, Smith A, Raj BA, Fargher K, Sadowski M, Wisniewski T, Shulman M, Faustin A, Rao J, Castro KM, Ulysse A, Chen S, Sheikh MO, Singleton-Garvin J. A predictive model using the mesoscopic architecture of the living brain to detect Alzheimer’s disease. Communications Medicine. 2022 Dec 1;2(1).

Published In

Communications Medicine

DOI

EISSN

2730-664X

Publication Date

December 1, 2022

Volume

2

Issue

1