Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease.
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Polycystic Kidney, Autosomal Dominant
- Podocytes
- Organoids
- Nephrons
- Models, Biological
- Mice
- Kidney
- Induced Pluripotent Stem Cells
- Humans
- Gene Editing
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Polycystic Kidney, Autosomal Dominant
- Podocytes
- Organoids
- Nephrons
- Models, Biological
- Mice
- Kidney
- Induced Pluripotent Stem Cells
- Humans
- Gene Editing