The link between integrability, level crossings and exact solution in quantum models
We investigate the connection between energy level crossings in integrable systems and their integrability, i.e. the existence of a set of non-trivial integrals of motion. In particular, we consider a general quantum Hamiltonian linear in the coupling u, H(u) = T + uV, and require that it has the maximum possible number of nontrivial commuting partners also linear in u. We demonstrate how this commutation requirement alone leads to: (1) an exact solution for the energy spectrum and (2) level crossings, which are always present in these Hamiltonians in violation of the Wigner-von Neumann non-crossing rule. Moreover, we construct these Hamiltonians explicitly by resolving the above commutation requirement and show their equivalence to a sector of Gaudin magnets (central spin Hamiltonians). In contrast, fewer than the maximum number of conservation laws does not guarantee level crossings. © 2009 IOP Publishing Ltd.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Related Subject Headings
- Mathematical Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences