Skip to main content

Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

Publication ,  Conference
Kong, L; Liu, Y; Li, X; Chen, R; Zhang, W; Ren, J; Pan, L; Chen, K; Liu, Z
Published in: Proceedings of the IEEE International Conference on Computer Vision
January 1, 2023

The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from severe weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available1

Duke Scholars

Published In

Proceedings of the IEEE International Conference on Computer Vision

DOI

ISSN

1550-5499

Publication Date

January 1, 2023

Start / End Page

19937 / 19949
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kong, L., Liu, Y., Li, X., Chen, R., Zhang, W., Ren, J., … Liu, Z. (2023). Robo3D: Towards Robust and Reliable 3D Perception against Corruptions. In Proceedings of the IEEE International Conference on Computer Vision (pp. 19937–19949). https://doi.org/10.1109/ICCV51070.2023.01830
Kong, L., Y. Liu, X. Li, R. Chen, W. Zhang, J. Ren, L. Pan, K. Chen, and Z. Liu. “Robo3D: Towards Robust and Reliable 3D Perception against Corruptions.” In Proceedings of the IEEE International Conference on Computer Vision, 19937–49, 2023. https://doi.org/10.1109/ICCV51070.2023.01830.
Kong L, Liu Y, Li X, Chen R, Zhang W, Ren J, et al. Robo3D: Towards Robust and Reliable 3D Perception against Corruptions. In: Proceedings of the IEEE International Conference on Computer Vision. 2023. p. 19937–49.
Kong, L., et al. “Robo3D: Towards Robust and Reliable 3D Perception against Corruptions.” Proceedings of the IEEE International Conference on Computer Vision, 2023, pp. 19937–49. Scopus, doi:10.1109/ICCV51070.2023.01830.
Kong L, Liu Y, Li X, Chen R, Zhang W, Ren J, Pan L, Chen K, Liu Z. Robo3D: Towards Robust and Reliable 3D Perception against Corruptions. Proceedings of the IEEE International Conference on Computer Vision. 2023. p. 19937–19949.

Published In

Proceedings of the IEEE International Conference on Computer Vision

DOI

ISSN

1550-5499

Publication Date

January 1, 2023

Start / End Page

19937 / 19949