Search for charged excited states of dark matter with KamLAND-Zen
Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (χ0) accompanied by a negatively charged excited state (χ−) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1−10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mχ0=1 TeV and mass difference Δm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity 〈σv〉 and the decay-width of χ− to 9.2×10−30 cm3/s and 8.7×10−14 GeV, respectively at 90% confidence level.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- Nuclear & Particles Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
- 0105 Mathematical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Related Subject Headings
- Nuclear & Particles Physics
- 51 Physical sciences
- 49 Mathematical sciences
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
- 0105 Mathematical Physics