An Automated Machine Learning-Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading.
BACKGROUND: Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes. OBJECTIVES: The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity. METHODS: ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading. RESULTS: The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild). CONCLUSIONS: An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Workflow
- Severity of Illness Index
- Reproducibility of Results
- Prognosis
- Predictive Value of Tests
- Mitral Valve Insufficiency
- Mitral Valve
- Middle Aged
- Male
- Machine Learning
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Workflow
- Severity of Illness Index
- Reproducibility of Results
- Prognosis
- Predictive Value of Tests
- Mitral Valve Insufficiency
- Mitral Valve
- Middle Aged
- Male
- Machine Learning