Skip to main content

Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes

Publication ,  Journal Article
Qiu, Z; Zhu, Y; Zhang, Q; Qiao, X; Mu, R; Xu, Z; Yan, Y; Wang, F; Zhang, T; Zhuang, WQ; Yu, K
Published in: Environmental Science and Ecotechnology
July 1, 2024

Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.

Duke Scholars

Published In

Environmental Science and Ecotechnology

DOI

EISSN

2666-4984

Publication Date

July 1, 2024

Volume

20

Related Subject Headings

  • 4104 Environmental management
  • 4103 Environmental biotechnology
  • 4011 Environmental engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Qiu, Z., Zhu, Y., Zhang, Q., Qiao, X., Mu, R., Xu, Z., … Yu, K. (2024). Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. Environmental Science and Ecotechnology, 20. https://doi.org/10.1016/j.ese.2023.100359
Qiu, Z., Y. Zhu, Q. Zhang, X. Qiao, R. Mu, Z. Xu, Y. Yan, et al. “Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes.” Environmental Science and Ecotechnology 20 (July 1, 2024). https://doi.org/10.1016/j.ese.2023.100359.
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, et al. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. Environmental Science and Ecotechnology. 2024 Jul 1;20.
Qiu, Z., et al. “Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes.” Environmental Science and Ecotechnology, vol. 20, July 2024. Scopus, doi:10.1016/j.ese.2023.100359.
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. Environmental Science and Ecotechnology. 2024 Jul 1;20.

Published In

Environmental Science and Ecotechnology

DOI

EISSN

2666-4984

Publication Date

July 1, 2024

Volume

20

Related Subject Headings

  • 4104 Environmental management
  • 4103 Environmental biotechnology
  • 4011 Environmental engineering