Signal Processing Methods of Enhanced Magnetic Memory Testing
As a particular kind of detection technology under weak magnetization, metal magnetic memory testing is very likely to be affected by external factors in the detecting process, which may lead to incorrect results. In order to minimize the negative influence of interrupting signals and improve the detection accuracy, this paper adopted the enhanced metal magnetic memory testing method to preliminarily increase the signal-to-noise ratio (SNR) of the detection signal and then compares the denoising effects of wavelet threshold denoising method, empirical mode decomposition (EMD) denoising method, EMD-wavelet threshold denoising method, ensemble EMD (EEMD), complementary EEMD (CEEMD), variational mode decomposition (VMD), local mean decomposition (LMD) and empirical wavelet transform (EWT) on the detection signal and the gradient signal respectively. The results show that the enhanced metal magnetic memory testing method can significantly increase the SNR of the obtained signal and cannot improve the SNR of a gradient signal which is generated from the obtained signal. The different denoising methods can further boost the SNR and improve the detection accuracy of the obtained signal and the gradient signal. Among the eight signal processing methods, wavelet threshold, EMD and its improved methods are more applicable in the denoising of enhanced metal magnetic memory testing signals. The Wavelet threshold denoising, EMD-wavelet threshold denoising and EEMD denoising all have good denoising effects, and the denoising results to the same signal are analogous.
Duke Scholars
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 4004 Chemical engineering
- 0904 Chemical Engineering
Citation
Published In
DOI
EISSN
Publication Date
Volume
Issue
Related Subject Headings
- 4004 Chemical engineering
- 0904 Chemical Engineering