Chemical signaling in biofilm-mediated biofouling.
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Signal Transduction
- Quorum Sensing
- Biofouling
- Biofilms
- Biochemistry & Molecular Biology
- Animals
- 3404 Medicinal and biomolecular chemistry
- 3101 Biochemistry and cell biology
- 0601 Biochemistry and Cell Biology
- 0304 Medicinal and Biomolecular Chemistry
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Signal Transduction
- Quorum Sensing
- Biofouling
- Biofilms
- Biochemistry & Molecular Biology
- Animals
- 3404 Medicinal and biomolecular chemistry
- 3101 Biochemistry and cell biology
- 0601 Biochemistry and Cell Biology
- 0304 Medicinal and Biomolecular Chemistry