Skip to main content

Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor.

Publication ,  Journal Article
Homan, KT; Waldschmidt, HV; Glukhova, A; Cannavo, A; Song, J; Cheung, JY; Koch, WJ; Larsen, SD; Tesmer, JJG
Published in: J Biol Chem
August 21, 2015

G protein-coupled receptor kinases (GRKs) regulate cell signaling by initiating the desensitization of active G protein-coupled receptors. The two most widely expressed GRKs (GRK2 and GRK5) play a role in cardiovascular disease and thus represent important targets for the development of novel therapeutic drugs. In the course of a GRK2 structure-based drug design campaign, one inhibitor (CCG215022) exhibited nanomolar IC50 values against both GRK2 and GRK5 and good selectivity against other closely related kinases such as GRK1 and PKA. Treatment of murine cardiomyocytes with CCG215022 resulted in significantly increased contractility at 20-fold lower concentrations than paroxetine, an inhibitor with more modest selectivity for GRK2. A 2.4 Å crystal structure of the GRK5·CCG215022 complex was determined and revealed that the inhibitor binds in the active site similarly to its parent compound GSK180736A. As designed, its 2-pyridylmethyl amide side chain occupies the hydrophobic subsite of the active site where it forms three additional hydrogen bonds, including one with the catalytic lysine. The overall conformation of the GRK5 kinase domain is similar to that of a previously determined structure of GRK6 in what is proposed to be its active state, but the C-terminal region of the enzyme adopts a distinct conformation. The kinetic properties of site-directed mutants in this region are consistent with the hypothesis that this novel C-terminal structure is representative of the membrane-bound conformation of the enzyme.

Duke Scholars

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

August 21, 2015

Volume

290

Issue

34

Start / End Page

20649 / 20659

Location

United States

Related Subject Headings

  • Sequence Alignment
  • Pyridines
  • Protein Structure, Secondary
  • Protein Interaction Domains and Motifs
  • Paroxetine
  • Myocytes, Cardiac
  • Myocardial Contraction
  • Mutation
  • Molecular Sequence Data
  • Models, Molecular
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Homan, K. T., Waldschmidt, H. V., Glukhova, A., Cannavo, A., Song, J., Cheung, J. Y., … Tesmer, J. J. G. (2015). Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J Biol Chem, 290(34), 20649–20659. https://doi.org/10.1074/jbc.M115.647370
Homan, Kristoff T., Helen V. Waldschmidt, Alisa Glukhova, Alessandro Cannavo, Jianliang Song, Joseph Y. Cheung, Walter J. Koch, Scott D. Larsen, and John J. G. Tesmer. “Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor.J Biol Chem 290, no. 34 (August 21, 2015): 20649–59. https://doi.org/10.1074/jbc.M115.647370.
Homan KT, Waldschmidt HV, Glukhova A, Cannavo A, Song J, Cheung JY, et al. Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J Biol Chem. 2015 Aug 21;290(34):20649–59.
Homan, Kristoff T., et al. “Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor.J Biol Chem, vol. 290, no. 34, Aug. 2015, pp. 20649–59. Pubmed, doi:10.1074/jbc.M115.647370.
Homan KT, Waldschmidt HV, Glukhova A, Cannavo A, Song J, Cheung JY, Koch WJ, Larsen SD, Tesmer JJG. Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J Biol Chem. 2015 Aug 21;290(34):20649–20659.

Published In

J Biol Chem

DOI

EISSN

1083-351X

Publication Date

August 21, 2015

Volume

290

Issue

34

Start / End Page

20649 / 20659

Location

United States

Related Subject Headings

  • Sequence Alignment
  • Pyridines
  • Protein Structure, Secondary
  • Protein Interaction Domains and Motifs
  • Paroxetine
  • Myocytes, Cardiac
  • Myocardial Contraction
  • Mutation
  • Molecular Sequence Data
  • Models, Molecular