
Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 5102 Atomic, molecular and optical physics
- 4003 Biomedical engineering
- 3212 Ophthalmology and optometry
- 0912 Materials Engineering
- 0205 Optical Physics