
All-Electron BSE@GW Method with Numeric Atom-Centered Orbitals for Extended Periodic Systems.
Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. J. Chem. Phys. 2020, 152, 044105). We present our recent developments in implementing this formalism for extended periodic systems. We discuss its numerical implementation and various convergence tests pertaining to numerical atom-centered orbitals, auxiliary basis sets for the resolution-of-identity formalism, and Brillouin zone sampling. Several proof-of-principle examples are presented to compare with other formalisms, illustrating the new all-electron BSE@GW method for extended periodic systems.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0803 Computer Software
- 0601 Biochemistry and Cell Biology
- 0307 Theoretical and Computational Chemistry
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Chemical Physics
- 3407 Theoretical and computational chemistry
- 3406 Physical chemistry
- 0803 Computer Software
- 0601 Biochemistry and Cell Biology
- 0307 Theoretical and Computational Chemistry