Skip to main content

Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.

Publication ,  Journal Article
Leng, Y; Ding, H; Ang, TFA; Au, R; Doraiswamy, PM; Liu, C
Published in: J Prev Alzheimers Dis
February 2025

BACKGROUND: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations. METHODS: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9 % women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in a separate group of 430 participants younger than 55 years (mean age 46, 56.7 % women). RESULTS: Over a mean follow-up of 20 years, 132 (15.4 %) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4 + status, regression models identified 309 proteins (P ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4 + status across 15-25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in the 339 participants (beta = -0.061, P = 0.046), 430 participants (beta = -0.060, P = 0.018), and the pooled 769 samples (beta = -0.058, P = 0.003). CONCLUSION: These findings highlight the utility of machine learning method in identifying proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.

Duke Scholars

Published In

J Prev Alzheimers Dis

DOI

EISSN

2426-0266

Publication Date

February 2025

Volume

12

Issue

2

Start / End Page

100021

Location

United States

Related Subject Headings

  • Proteomics
  • Prognosis
  • Middle Aged
  • Male
  • Machine Learning
  • Humans
  • Female
  • Blood Proteins
  • Biomarkers
  • Alzheimer Disease
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Leng, Y., Ding, H., Ang, T. F. A., Au, R., Doraiswamy, P. M., & Liu, C. (2025). Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study. J Prev Alzheimers Dis, 12(2), 100021. https://doi.org/10.1016/j.tjpad.2024.100021
Leng, Yuanming, Huitong Ding, Ting Fang Alvin Ang, Rhoda Au, P Murali Doraiswamy, and Chunyu Liu. “Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.J Prev Alzheimers Dis 12, no. 2 (February 2025): 100021. https://doi.org/10.1016/j.tjpad.2024.100021.
Leng Y, Ding H, Ang TFA, Au R, Doraiswamy PM, Liu C. Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study. J Prev Alzheimers Dis. 2025 Feb;12(2):100021.
Leng, Yuanming, et al. “Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.J Prev Alzheimers Dis, vol. 12, no. 2, Feb. 2025, p. 100021. Pubmed, doi:10.1016/j.tjpad.2024.100021.
Leng Y, Ding H, Ang TFA, Au R, Doraiswamy PM, Liu C. Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study. J Prev Alzheimers Dis. 2025 Feb;12(2):100021.

Published In

J Prev Alzheimers Dis

DOI

EISSN

2426-0266

Publication Date

February 2025

Volume

12

Issue

2

Start / End Page

100021

Location

United States

Related Subject Headings

  • Proteomics
  • Prognosis
  • Middle Aged
  • Male
  • Machine Learning
  • Humans
  • Female
  • Blood Proteins
  • Biomarkers
  • Alzheimer Disease