Topological acoustofluidics.
The complex interaction of spin, valley and lattice degrees of freedom allows natural materials to create exotic topological phenomena. The interplay between topological wave materials and hydrodynamics could offer promising opportunities for visualizing topological physics and manipulating bioparticle unconventionally. Here we present topological acoustofluidic chips to illustrate the complex interaction between elastic valley spin and nonlinear fluid dynamics. We created valley streaming vortices and chiral swirling patterns for backward-immune particle transport. Using tracer particles, we observed arrays of clockwise and anticlockwise valley vortices due to an increase in elastic spin density. Moreover, we discovered exotic topological pressure wells in fluids, creating nanoscale trapping fields for manipulating DNA molecules. We also found a 93.2% modulation in the bandwidth of edge states, dependent on the orientation of the substrate's crystallographic structure. Our study sets the stage for uncovering topological acoustofluidic phenomena and visualizing elastic valley spin, revealing the potential for topological-material applications in life sciences.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Nanoscience & Nanotechnology