Skip to main content

A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies

Publication ,  Journal Article
Li, X; Chen, H; Selvaraj, MS; Van Buren, E; Zhou, H; Wang, Y; Sun, R; McCaw, ZR; Yu, Z; Jiang, MZ; DiCorpo, D; Gaynor, SM; Dey, R; Bis, JC ...
Published in: Nature Computational Science
February 1, 2025

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally scalable analytical pipeline for functionally informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits in 61,838 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered and replicated new associations with lipid traits missed by single-trait analysis.

Duke Scholars

Published In

Nature Computational Science

DOI

EISSN

2662-8457

Publication Date

February 1, 2025

Volume

5

Issue

2

Start / End Page

125 / 143
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Li, X., Chen, H., Selvaraj, M. S., Van Buren, E., Zhou, H., Wang, Y., … Watt, J. (2025). A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. Nature Computational Science, 5(2), 125–143. https://doi.org/10.1038/s43588-024-00764-8
Li, X., H. Chen, M. S. Selvaraj, E. Van Buren, H. Zhou, Y. Wang, R. Sun, et al. “A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies.” Nature Computational Science 5, no. 2 (February 1, 2025): 125–43. https://doi.org/10.1038/s43588-024-00764-8.
Li X, Chen H, Selvaraj MS, Van Buren E, Zhou H, Wang Y, et al. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. Nature Computational Science. 2025 Feb 1;5(2):125–43.
Li, X., et al. “A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies.” Nature Computational Science, vol. 5, no. 2, Feb. 2025, pp. 125–43. Scopus, doi:10.1038/s43588-024-00764-8.
Li X, Chen H, Selvaraj MS, Van Buren E, Zhou H, Wang Y, Sun R, McCaw ZR, Yu Z, Jiang MZ, DiCorpo D, Gaynor SM, Dey R, Arnett DK, Benjamin EJ, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Brody JA, Cade BE, Carson AP, Carlson JC, Chami N, Chen YDI, Curran JE, de Vries PS, Fornage M, Franceschini N, Freedman BI, Gu C, Heard-Costa NL, He J, Hou L, Hung YJ, Irvin MR, Kaplan RC, Kardia SLR, Kelly TN, Konigsberg I, Kooperberg C, Kral BG, Li C, Li Y, Lin H, Liu CT, Loos RJF, Mahaney MC, Martin LW, Mathias RA, Mitchell BD, Montasser ME, Morrison AC, Naseri T, North KE, Palmer ND, Peyser PA, Psaty BM, Redline S, Reiner AP, Rich SS, Sitlani CM, Smith JA, Taylor KD, Tiwari HK, Vasan RS, Viali S, Wang Z, Wessel J, Yanek LR, Yu B, de las Fuentes L, de Andrade M, Zoellner S, Zody M, Ziv E, Zhu X, Zhao W, Zhao SX, Zhang Y, Zekavat SM, Yu K, Yang I, Xu H, Wu J, Wu B, Wong Q, Winterkorn L, Wilson J, Wilson C, Williams S, Williams LK, Williams K, Willer C, Weng LC, Weiss ST, Weir B, Weinstock J, Weeks DE, Watt J. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies. Nature Computational Science. 2025 Feb 1;5(2):125–143.

Published In

Nature Computational Science

DOI

EISSN

2662-8457

Publication Date

February 1, 2025

Volume

5

Issue

2

Start / End Page

125 / 143